车辆转向过程中,存在稳定性与安全性低下问题,因此,提出基于自抗扰液压控制技术的汽车主动后轮转向方法。通过构建汽车横向动力学模型,并基于变动液压传动比精确计算后轮转向的期望横摆角速度;利用该期望横摆角速度作为跟踪目标,设计包含扩展状态观测器、跟踪微分器和非线性误差液压控制律的自抗扰液压控制器;通过获取附加后轮转角并调整,确保汽车能够紧密跟随理想模型,实现后轮转向的精准控制。仿真结果表明:通过跟踪车辆质心侧偏角与横摆角速度,并应用液压传动比,车辆稳定性得到显著提升,有效预防侧翻风险,确保行车安全。同时,该控制方法使汽车展现出优良的横摆角速度响应特性,且质心侧偏角预估值非常准确,对于提升车辆转向性能及行车安全具有重要意义。
Abstract
During the vehicle turning process, there are issues of low stability and safety. Therefore, a method for active rear wheel steering of automobiles based on self disturbance rejection hydraulic control technology is proposed. By constructing a vehicle lateral dynamics model and designing a variable hydraulic transmission ratio algorithm based on it, the expected yaw rate of rear wheel steering can be accurately calculated; Using the expected yaw rate as the tracking target, design an active disturbance rejection hydraulic controller that includes an extended state observer, tracking differentiator, and nonlinear error hydraulic control law; By obtaining additional rear wheel steering angles and adjusting them, ensure that the car can closely follow the ideal model and achieve precise control of rear wheel steering. The simulation results show that by tracking the vehicle's center of mass sideslip angle and yaw rate, and applying hydraulic transmission ratio, the vehicle's stability is significantly improved, effectively preventing the risk of rollover and ensuring driving safety. At the same time, this control method enables the vehicle to exhibit excellent yaw rate response characteristics, and the estimated value of the center of mass lateral deviation angle is highly accurate, which is of great significance for improving the vehicle's steering performance and driving safety.
关键词
自抗扰技术 /
后轮转向 /
转向控制 /
横摆角速度 /
自抗扰液压控制器 /
液压冲击惯性量
{{custom_keyword}} /
Key words
self disturbance rejection technology /
rear wheel steering /
steering control /
yaw rate /
self disturbance rejection hydraulic controller /
hydraulic impact inertia
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 彭文正,敖银辉,邹晨祺,等.主动后轮转向及分布式驱动车辆协同控制研究[J].机械科学与技术,2020,39(2):207-213.
PENG Wenzheng, AO Yinhui, ZOU Chenqi, et al. Cooperative Control for Distributed Drive Vehicle and Active Rear Wheel Steering [J]. Mechanical Science and Technology for Aerospace Engineering, 2020,39(2):207-213.
[2] 单云霄,黄润辉,何泽,等.深度纯追随的拟人化无人驾驶转向控制模型[J].中国图象图形学报,2021,26(1):176-185.
SHAN Yunxiao, HUANG Runhui, HE Ze, et al. Human-like Steering Model for Autonomous Driving Based on Deep Pure Pursuit Method [J]. Journal of Image and Graphics, 2021,26(1):176-185.
[3] 范浩洋,李韶华,王桂洋.基于滑模控制的车辆主动转向硬件在环实验分析[J].力学与实践,2020,42(5):543-550.
FAN Haoyang, LI Shaohua, WANG Guiyang. Experimental Analysis of Active Steering Hardware-in-loop Based on Sliding Mode Control [J]. Mechanics in Engineering, 2020,42(5):543-550.
[4] 高瑞敏.拖拉机助力转向控制策略研究——基于3C2410微处理器[J].农机化研究,2023,45(9):260-264.
GAO Ruimin. Research on Control Strategy of Tractor Power Steering Based on 3C2410 Microprocessor [J]. Journal of Agricultural Mechanization Research, 2023,45(9):260-264.
[5] 郑怀航,王军政,刘冬琛,等.融合前馈与姿态预测的并联稳定平台自抗扰控制策略[J].机械工程学报,2021,57(9):19-27.
ZHENG Huaihang, WANG Junzheng, LIU Dongchen, et al. Active Disturbance Rejection Control Strategy of Parallel Stable Platform Based on Feedforward and Attitude Prediction [J]. Journal of Mechanical Engineering, 2021,57(9):19-27.
[6] 方培俊,蔡英凤,陈龙,等.基于车辆动力学混合模型的智能汽车轨迹跟踪控制方法[J].汽车工程,2022,44(10):1469-1483,1510.
FANG Peijun, CAI Yingfeng, CHEN Long, et al. Trajectory Tracking Control Method Based on Vehicle Dynamics Hybrid Model for Intelligent Vehicle [J]. Automotive Engineering, 2022,44(10):1469-1483,1510.
[7] 夏秋,陈特,陈龙,等.基于冗余信息融合的车辆质心侧偏角估计方法[J].汽车工程,2022,44(2):280-289.
XIA Qiu, CHEN Te, CHEN Long, et al. Vehicle Sideslip Angle Estimation Method Based on Redundant Information Fusion [J]. Automotive Engineering, 2022,44(2):280-289.
[8] 廖尉华,何智成,蒋祖坚,等.基于RISF融合的车辆横摆角速度估计[J].汽车工程,2022,44(1):115-122.
LIAO Weihua, HE Zhicheng, JIANG Zujian, et al. Vehicle Yaw Rate Estimation Based on Reliability Indexed Sensor Fusion [J]. Automotive Engineering, 2022,44(1):115-122.
[9] 杨杰,陈昱圻,王盼盼.基于改进粒子群算法的列车速度跟踪自抗扰控制器设计[J].铁道学报,2021,43(7):40-46.
YANG Jie, CHEN Yuqi, WANG Panpan. Design of Active Disturbance Rejection Controller for Train Speed Tracking Based on Improved Particle Swarm Optimization [J]. Journal of the China Railway Society, 2021,43(7):40-46.
[10] 彭文典,严运兵,杨勇,等.独立线控转向电机转角自适应反演滑模控制[J].计算机仿真,2022,39(2):108-113,456.
PENG Wendian, YAN Yunbing, YANG Yong, et al. Adaptive Backstepping Sliding Mode Control of Motor Rotation Angle for Independent Steer-by-wire [J]. Computer Simulation, 2022,39(2):108-113,456.
[11] 刘红,杨奇,陈莉.一种双液压缸电液比例位置同步控制方法[J].液压气动与密封,2023,43(7):80-84.
LIU Hong, YANG Qi, CHEN Li. A Method of Electro-hydraulic Proportional Position Synchronous Control for Double Hydraulic Cylinders [J]. Hydraulics Pneumatics & Seals, 2023,43(7):80-84.
[12] 叶伯生,谭帅,黎晗,等.基于跟踪微分器的移动机器人轨迹规划与跟踪控制研究[J].机床与液压,2022,50(11):1-7.
YE Bosheng, TAN Shuai, LI Han, et al. Research on Trajectory Planning and Tracking Control of Mobile Robot Based on Tracking Differentiator [J]. Machine Tool & Hydraulics, 2022,50(11):1-7.
[13] 张振,郭一楠,巩敦卫,等.基于改进扩展状态观测器的液压锚杆钻机滑模摆角控制[J].自动化学报,2023,49(6):1256-1271.
ZHANG Zhen, GUO Yi'nan, GONG Dunwei, et al. Sliding Mode Swing Angle Control for a Hydraulic Roofbolter Based on Improved Extended State Observer [J]. Acta Automatica Sinica, 2023,49(6):1256-1271.
[14] 朱超威,李生权,李娟,等.基于非线性扩张状态观测器的四面固支板自抗扰振动主动控制[J].扬州大学学报(自然科学版),2020,23(1):21-25.
ZHU Chaowei, LI Shengquan, LI Juan, et al. Active Disturbance Rejection Vibration Control for an All-clamped Plate Based on Nonlinear Extended State Observer [J]. Journal of Yangzhou University (Natural Science Edition), 2020,23(1):21-25.
[15] 陈杰,泮进明.基于误差反馈的双缸液压系统同步模糊PID控制系统设计[J].锻压技术,2022,47(3):142-145,168.
CHEN Jie, PAN Jinming. Design on Synchronous Fuzzy PID Control System for Double-cylinder Hydraulic System Based on Error Feedback [J]. Forging & Stamping Technology, 2022,47(3):142-145,168.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}