由于飞机液压管路结构的复杂性和隐蔽性,故障诊断的准确性受到限制。在多载荷耦合作用下,检测故障的振动信号会受到流固耦合干扰,导致振动特征提取困难,进而影响故障诊断结果的准确性,因此,设计一种适用于多载荷耦合作用下的飞机液压管路故障诊断方法。在外界环境载荷和自激振动等多载荷耦合作用下,分析飞机液压管路的振动信号形成机理。通过计算获得飞机液压管路的基础指标参数,结合词袋模型与支持向量机(Support Vector Machine,SVM)设计液压管路故障诊断模型,获取故障诊断标签,从而实现飞机液压管路故障诊断。测试结果表明:该设计方法在飞机液压管路故障诊断实验中能够迅速准确检测故障,即使在多载荷耦合作用逐渐增强的情况中,该方法的故障诊断性能依然稳定,诊断准确度保持在80%以上。
Abstract
Due to the complexity and concealment of aircraft hydraulic pipeline structures, the accuracy of fault diagnosis is limited. Under the combined effects of multiple loads, the vibration signals for detecting faults are subject to fluid-structure interaction interference, making it difficult to extract vibration characteristics, which in turn affects the accuracy of fault diagnosis results. Therefore, a fault diagnosis method for aircraft hydraulic pipelines under the combined effects of multiple loads is designed. By analyzing the mechanism of vibration signal formation in aircraft hydraulic pipelines under the combined effects of external environmental loads and self-excited vibrations, the basic index parameters of aircraft hydraulic pipelines are calculated. A fault diagnosis model for hydraulic pipelines is designed by combining the bag-of-words model with SVM, obtaining fault diagnosis labels, thereby realizing fault diagnosis of aircraft hydraulic pipelines. Test results show that this design method performs excellently in aircraft hydraulic pipeline fault diagnosis experiments, capable of quickly and accurately detecting faults. Even as the combined effects of multiple loads gradually intensify, the fault diagnosis performance of this method remains stable, with diagnostic accuracy maintained above 80%.
关键词
多载荷耦合作用 /
流固耦合现象 /
飞机液压管路 /
故障诊断 /
词袋模型
{{custom_keyword}} /
Key words
multi load coupling effect /
fluid structure coupling phenomenon /
aircraft hydraulic pipelines /
fault diagnosis /
bag-of-words model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨建忠,王浩天,陈希远.飞机防滑刹车系统模糊滑模控制研究[J].计算机仿真,2022,39(7):74-80.
YANG Jianzhong, WANG Haotian, CHEN Xiyuan. Research on Fuzzy Sliding Mode Control of Aircraft Antiskid Brake System [J]. Computer Simulation, 2022,39(7):74-80.
[2] 陈星.飞机舵机电液负载模拟装置故障诊断策略研究[J].液压气动与密封,2023,43(8):109-112.
CHEN Xing. Research on Fault Diagnosis Strategy of Electro Hydraulic Load Simulator for Aircraft Steering Gear [J]. Hydraulics Pneumatics & Seals, 2023,43(8):109-112.
[3] 崔芷宁,于晓光,孙杰,等.基于CEEMD航空液压管路故障诊断方法研究[J].机床与液压, 2023,51(1):189-195.
CUI Zhining, YU Xiaoguang, SUN Jie, et al. Research on Fault Diagnosis Method of Aviation Hydraulic Pipeline Based on CEEMD [J]. Machine Tool & Hydraulics, 2023,51(1):189-195.
[4] 黄续芳,杨雪银,张小波,等.基于DBN模型的航空液压管路故障诊断方法[J].机械设计与研究,2021, 37(5):94-98,105.
HUANG Xufang, YANG Xueyin, ZHANG Xiaobo, et al. An Intelligent Fault Diagnosis Method of Aero-hydraulic Pipeline Based on DBN [J]. Machine Design & Research, 2021,37(5):94-98,105.
[5] 于喜金,于晓光,杨同光,等.基于优化VMD和BP神经网络液压管路故障诊断研究[J].机床与液压,2022,50(9):215-220.
YU Xijin, YU Xiaoguang, YANG Tongguang, et al. Research on Fault Diagnosis of Hydraulic Pipeline Based on Optimized VMD and BP Neural Network [J]. Machine Tool & Hydraulics, 2022,50(9):215-220.
[6] YANG T, LI G, YUAN S, et al. The LST-SATM-net: A New Deep Feature Learning Framework for Aero-engine Hydraulic Pipeline Systems Intelligent Faults Diagnosis [J]. Applied Acoustics, 2023,210:109436.
[7] 史俊强,孟凯林,王卿,等.多载荷耦合作用下飞机液压管路应力分析[J].液压与气动,2023,47(1):175-181.
SHI Junqiang, MENG Kailin, WANG Qing, et al. Stress Analysis of Aircraft Hydraulic Pipeline Under Multi-load Coupling [J]. Chinese Hydraulics & Pneumatics, 2023,47(1):175-181.
[8] 刘涌泉,李巍,牛伟,等.航空液压系统流量智能预测方法研究[J].科学技术与工程,2022,22(28):12476-12483.
LIU Yongquan, LI Wei, NIU Wei, et al. Intelligent Flow Forecasting Method of Aviation Hydraulic System[J]. Science Technology and Engineering, 2022,22(28):12476-12483.
[9] 宋单阳,宋建成,陶心雅,等.具有故障诊断功能的液压支架电液控制器通信系统[J].工矿自动化,2022,48(5):100-106.
SONG Shanyang, SONG Jiancheng, TAO Xinya, et al. Communication System of Hydraulic Support Electro-hydraulic Controller with Fault Diagnosis Function [J]. Journal of Mine Automation, 2022,48(5):100-106.
[10] 王家博,张海军,赵余祥,等.基于BAS-BP模型HMCVT换段液压系统故障的诊断方法[J].南京农业大学学报,2023,46(3):626-634.
WANG Jiabo, ZHANG Haijun, ZHAO Yuxiang, et al. Fault Diagnosis Method of Section Changing Hydraulic System of HMCVT Based on BAS-BP Model [J]. Journal of Nanjing Agricultural University, 2023,46(3):626-634.
[11] 张垚,温育明,王山.某飞机液压油箱漏油故障研究[J].润滑与密封,2021,46(5):142-145,152.
ZHANG Yao, WEN Yuming, WANG Shan. Research on Hydraulic Tank Oil Leakage Failure of a Certain Type of Aircraft [J]. Lubrication Engineering, 2021,46(5):142-145,152.
[12] 贾超广,肖海霞.基于贝叶斯分类器的液压泵故障分级诊断方法[J].液压与气动,2023,47(6):181-188.
JIA Chaoguang, XIAO Haixia. Hierarchical Fault Diagnosis Method of Hydraulic Pump Based on Bayesian Classifier [J]. Chinese Hydraulics & Pneumatics, 2023,47(6):181-188.
[13] 涂勇,张桥峰.调速器液压跟随故障智能诊断方法研究[J].人民长江,2022,53(S2):184-187.
TU Yong, ZHANG Qiaofeng. Research on Intelligent Diagnosis Method of Governor Hydraulic Tracking Fault [J]. Yangtze River, 2022,53(S2):184-187.
[14] 郑直,李世峰,郭洋,等.基于液压泵复数信号的log-SAM故障诊断方法研究[J].振动与冲击,2021,40(6):79-85.
ZHENG Zhi, LI Shifeng, GUO Yang, et al. Hydraulic Pump Fault Diagnosis Method Using log-SAM on Complex Signals [J]. Journal of Vibration and Shock, 2021,40(6):79-85.
[15] 赵华,孟祥懿,宋彦彦.一种锻造液压机远程故障诊断系统[J].机械设计,2021,38(S1):317-320.
ZHAO Hua, MENG Xiangyi, SONG Yanyan. A Remote Fault Diagnosis System for Forging Hydraulic Press [J]. Journal of Machine Design, 2021,38(S1):317-320.
[16] 王立文,李玉帅,刘强,等.裂纹损伤下液压管路振动特性分析[J].机械设计,2023,40(5):86-95.
WANG Liwen, LI Yushuai, LIU Qiang, et al. Analysis on Vibration Characteristics of Hydraulic Pipeline with Crack Damage [J]. Journal of Machine Design, 2023,40(5):86-95.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金委员会-中国民用航空总局联合研究基金(U2233213)
{{custom_fund}}