IMF Identification of Rolling Bearings Fault Vibration for Coal Preparation Crusher Under Impact

ZHANG Hai-sheng

Hydraulics Pneumatics & Seals ›› 2025, Vol. 45 ›› Issue (6) : 70-78.

PDF(1589 KB)
PDF(1589 KB)
Hydraulics Pneumatics & Seals ›› 2025, Vol. 45 ›› Issue (6) : 70-78. DOI: 10.3969/j.issn.1008-0813.2025.06.009
Design & Research

IMF Identification of Rolling Bearings Fault Vibration for Coal Preparation Crusher Under Impact

  • ZHANG Hai-sheng
Author information +
History +

Abstract

The vibration signal of hydraulic rolling bearing of coal preparation crusher is affected by environmental noise, which presents periodic impact and nonlinear energy characteristics, which makes the fault identification result inaccurate. Therefore, an IMF method for fault vibration identification of hydraulic rolling bearing of coal preparation crusher based on periodic impact is proposed. Through Empirical Mode Decomposition (EMD) technology, the vibration signal collected by the three-axis acceleration sensor is decomposed into the Intrinsic Mode Function (IMF), and the abnormal energy moment features in the IMF are extracted. The cuckoo optimization algorithm is used to improve the clustering effect of the peak density clustering algorithm, and the local density value of the IMF energy moment characteristic is calculated to recognize the fault vibration of the hydraulic rolling bearing of the coal separation crusher. The experimental results show that the proposed method can effectively identify the fault vibration of hydraulic rolling bearings under different fault conditions, and the identification results are consistent with the actual situation, indicating that the method has a good recognition accuracy.

Key words

hydraulic rolling bearings / IMF algorithm / coal selection crusher / fault identification / abnormal energy moment / peak density clustering

Cite this article

Download Citations
ZHANG Hai-sheng. IMF Identification of Rolling Bearings Fault Vibration for Coal Preparation Crusher Under Impact[J]. Hydraulics Pneumatics & Seals, 2025, 45(6): 70-78 https://doi.org/10.3969/j.issn.1008-0813.2025.06.009

References

[1] 侯东晓,周子安,程荣财,等.基于GADF-TL-ResNeXt的滚动轴承故障诊断方法[J].计量学报,2023,44(10):1534-1542.
HOU Dongxiao, ZHOU Zian, CHENG Rongcai, et al. Based on the GADF-TL-ResNeXt Rolling Bearing Fault Diagnosis Method [J]. Acta Metrologica Sinica, 2023,44(10):1534-1542.
[2] 杨健,李立新,廖晨茜,等.面向滚动轴承故障诊断的改进对抗迁移学习算法研究[J].中国测试,2021,47(9):15-19,40.
YANG Jian,LI Lixin, LIAO Chenxi, et al. Research on Improved Adversarial Transfer Learning Method for Rolling Bearing Fault Diagnosis [J]. China Measurement & Test, 2021,47(9):15-19,40.
[3] 杨森,王恒迪,崔永存,等.基于改进SSA的参数优化VMD和ELM的轴承故障诊断[J].机械传动,2023,47(10):162-168.
YANG Sen, WANG Hengdi, CUI Yongcun, et al. Bearing Fault Diagnosis Based on Parameter Optimized VMD and ELM with Improved SSA [J]. Journal of Mechanical Transmission, 2023,47(10):162-168.
[4] 郭俊锋,孙磊,王淼生,等.基于1D-LeNet-5模型的滚动轴承故障诊断方法[J].兰州理工大学学报,2023,49(5):34-41.
GUO Junfeng, SUN Lei, WANG Miaosheng, et al. Fault Diagnosis Method of Rolling Bearing Based on 1D-LeNet-5 Model [J]. Journal of Lanzhou University of Technology, 2023,49(5):34-41.
[5] 梁雄鹤,陈珊,魏豪,等.基于最优IMF分量和K-SVD的滚动轴承故障声音信号特征提取[J].机械与电子,2022,40(2):8-12,17.
LIANG Xionghe, CHEN Shan, WEI Hao, et al. Extraction of Rolling Bearing Fault Sound Signal Features Based on Optimal IMFComponents and KSVD [J]. Machinery & Electronics, 2022,40(2):8-12,17.
[6] 武煜坤,宁少慧,任永磊,等.基于G-YOLO网络的滚动轴承故障诊断方法[J].噪声与振动控制,2023,43(5):161-166.
WU Yukun, NING Shaohui, REN Yonglei, et al. Fault Diagnosis Method of Rolling Bearings Based on G-YOLO Network [J]. Noise and Vibration Control, 2023,43(5):161-166.
[7] 唐世钰,童靳于,郑近德,等.改进的深度残差收缩网络轴承故障诊断方法[J].振动与冲击,2023,42(18):217-224,285.
TANG Shiyu, TONG Jinyu, ZHENG Jinde, et al. Improved Deep Residual Shrinkage Network Used for Bearing Fault Diagnosis [J]. Journal of Vibration and Shock, 2023,42(18):217-224,285.
[8] 王连生.滑动轴承的压力分布与功耗数值计算[J].液压气动与密封,2023,43(2):16-20,26.
WANG Liansheng. A Numerical Simulation of Pressure Distribution and Power Dissipation on Journal Bearing [J]. Hydraulics Pneumatics & Seals, 2023,43(2):16-20,26.
[9] 邓晓琴,瞿卫华,陈金保,等.融合IMF能量矩和BiLSTMNN的水电机组振动故障诊断[J].水力发电学报,2023,42(10):86-95.
DENG Xiaoqin, QU Weihua, CHEN Jinbao, et al. Vibration Fault Diagnosis of Hydropower Units Based on IMF Energy Moment and BiLSTMNN [J]. Journal of Hydroelectric Engineering, 2023,42(10):86-95.
[10] 赵志宏,张然,刘克俭,等.一种改进原型网络的小样本轴承故障诊断方法[J].振动与冲击,2023,42(20):214-221.
ZHAO Zhihong, ZHANG Ran, LIU Kejian, et al. An Improved Prototype Network Method for Small Sample Bearing Fault Diagnosis [J]. Journal of Vibration and Shock, 2023,42(20):214-221.
[11] 夏焰坤,李欣洋,任俊杰,等.基于CEEMDAN-HT的永磁同步电机匝间短路振动信号故障特征提取研究[J].振动与冲击,2024,43(5):72-81.
XIA Yankun, LI Xinyang, REN Junjie, et al. Fault Feature Extraction of Inter-turn Short Circuit Vibration Signals in PMSM Based on CEEMDAN-HT [J]. Journal of Vibration and Shock, 2024,43(5):72-81.
[12] 董庆伟,李行,李阁强,等.高速高压圆弧齿轮泵滑动轴承油膜特性研究[J].液压气动与密封,2023,43(6):71-77.
DONG Qingwei, LI Xing, LI Geqiang, et al. Study on Oil Film Characteristics of Sliding Bearing for High Speed and High Pressure Arc Gear Pump [J]. Hydraulics Pneumatics & Seals, 2023,43(6):71-77.
[13] 张伟,卞其翀,叶丹茜.复合多尺度注意熵在旋转机械多工况损伤识别中的应用[J].机电工程,2024,41(3):418-429.
ZHANG Wei, BIAN Qichong, YE Danqian. Application of Composite Multi-scale Attention Entropy in Damage Identification of Rotating Machinery Under Multiple Working Conditions[J]. Journal of Mechanical & Electrical Engineering, 2024,41(3):418-429.
PDF(1589 KB)

36

Accesses

0

Citation

Detail

Sections
Recommended

/